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Spermine Participates in Oxidative Damage of Guanosine and
8-Oxoguanosine Leading to Deoxyribosylurea Formation
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7,8-Dihydro-8-oxo-2deoxyguanosine (8-oxoG, Scheme 1) is the A BCDDEF
primary oxidation product of guanosine and is a biomarker of lor2— 5
cellular oxidative damagk8-OxoG is genotoxic if left unrepaired + spermine
as itinduces &-T transversion mutatior’s Exposure of DNA to 1 z_...q
reactive oxygen species generates 8-0xoG from guanine resielues, 1=y
and further oxidation of 8-0x0G can also occur due to the lower OMAZEd ) = 5 CCGOAATTGGCCY

ionization potential of 8-0xoG relative to &Two of the resulting ) ) 2= sl'COGGM_TTGGCC'T )
Figure 1. 20% Denaturing polyacrylamide gel electrophoretic study of

products, §piroiminodihy_da_1nto.in (Sp) and guanidinodihydaptoin adducts. (A)L, (B) 1 with spermine, (C)L with IV, (D) 1 with spermine
(Gh), are highly mutagenic in vivbThe structural characterization  ang ¥, (E) 2 with spermine, Rose Bengal, art, and (F)2 only.
as well as the conditions for formation of Sp and Gh have been Concentrations: 1 or 2] = 10 uM; [spermine]= 100 uM; [Ir'V or Rose
studied extensively within a broad range of oxidation systems. With Bengal]= 100 xM.

guanosinelO, as well as photoinduced electron-transfer both yield

. Scheme 1. Fate of Guanosine and 8-Oxo-guanosine Oxidation
Sp (at pH>7) and Gh (at pH<7).8°10 One-electron oxidants,

including IfV 11.12peroxynitrite (ONOO),'3 COz"~,**HOCI > and N i \H HN "“%2
peroxyl radical® also produce Sp and Gh from G or 8-0x0G. <'N ' - o= NJLNHZ
5-OH-OG has previously been implicated as the common inter-  ona i oNA "
mediate, leading to either Gh or Sp depending on pH and base ¢ fL NuH, %L Gh
stacking®1217 An oxidized quinonoid species, O is pro- w 9 °=< )\ o< )\NH\ NuO
posed as a precursor subject to nucleophilic addition to form o=(NfL)"\“ 211V DNA DNA HN lNK
5-NuH-OG (Scheme 1j by analogy to the urate oxidation ENA N”NH, oG 5-Nu-0G o ENAH NH,
pathway:®20 0G NuH, = H,0, RNH, Sp

The susceptibility of 8-0xoG to nucleophiles under oxidative
conditions is showcased by the covalent cross-linking of a DNA model oxidant, NgrClg, a related single-stranded sequence was
repair protein to dsDNA containing a single 8-ox8GThe used in all further studies to simplify DNA adduct characterization
observation that oxidized 8-0xoG could be trapped by a lysine in by mass spectrometry and HPLC.
a protein context encouraged us to investigate other biological In a typical experiment, two sSDNA oligomers; GCGOAAT-
amines as nucleophiles for their ability to covalently modify TGGCC-3 (1) and 3-CCGGAATTGGCC-3 (2), were analyzed
oxidatively damaged DNA. In the nucleus, DNA is electrostatically independently for their ability to form adducts with spermine upon
courted by spermine, a ubiquitous polyamine with cellular and oxidation. Oxidation of radiolabelet(10 M) with NaulrClg (100
nuclear concentrations in the millimolar rangeSpermine partici- uM) in the presence of excess spermine (&80 yielded an adduct
pates in myriad cellular processes and has been referred to asat pH 7, visualized as a higher band in the PAGE analysis (Figure
radioprotective given its ability to mitigate radiation-induced 1, lane D). A DNA-spermine adduct was also observed, although
DNA damage’®~?” We hypothesized that spermine, based on less efficiently, when radiolabele?l was oxidized by!O, from
its close association with cellular DNA, would trap oxidized photoactivated Rose Bengal (10®) at pH 7 (Figure 1, lane E).
8-0x0G in the same manner as®ileading to Sp and Gh ana-  This experiment suggests that adducts can be obtained by oxidation

logues. Under conditions similar to our DN#rotein cross- of undamaged DNA, although to a lesser extent than from 8-oxoG
linking studies, DNA-spermine adducts were readily achieved oxidation3?
in 75% vyield from B-form self-complementary dsDNA, a Dicker- To establish that the adduct had formed specifically at the 8-0xoG

son-Drew dodecame® containing a single 8-oxoG residue base inl, the adduct was isolated from the gel and treated with
(5-CGCOAATTCGCG-3 where O is 8-0x0G). When the spermine 0.2 M piperidine; the resulting '§32-P]-labeled 3-nucleotide

concentration was decreased from 100 tquM (equimolar with fragment was observed by PAGE (Figure 2, larf. Dhe adduct
OG-oligomer), spermine still competed very effectively with solvent was also heat labile since incubation at*@for 30 min produced
as a nucleophile, yielding 50% spermine adducts. nearly complete reversion to a band resembling starting material.

Spermine’s proposed method of nucleophilic attack, as shown In a parallel experiment, the adduct was evaluated by HPLC and
in Scheme 1, requires the amine to be able to access C-5 of theESI-MS2 where it was confirmed that the major product of the
8-0x0G base. Previous crystallographic analysis places sperminereaction was indeed one spermine molecule appended to the

in the major groove of the DickersetDrew dodecamet? although oxidized DNA 12-mer { + spermine— 2H). Interestingly, the only
other analytical tools, including photoaffinity cleavagend NMR3! other mass observed for the adduct (lane D) corresponded to a loss
show spermine to be more promiscuous with respect to its of 107 amu from the starting oligomér

localization on dsDNA. While a dsDNA template gave high- HPLC analysis indicated that the adduct formation, as well as

yielding and reproducible spermine addd¢ts the presence ofa  the nature of the adduct itself, was more complicated than
9540 = J. AM. CHEM. SOC. 2004, 126, 9540—9541 10.1021/ja047981q CCC: $27.50 © 2004 American Chemical Society
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+—> 1 + spermine - 2 amu
A1 - 107 amu

cleavage
— product from 1
(5-CCG-3")
Figure 2. 20% Denaturing PAGE of gel-isolated adductsl)(Bolated
adduct from lanéD in Figure 1, (¥) heat-treated adduct (€, 30 min),
(D3) alkali-treated adduct (0.2 M piperidine, SC, 30 min).

Scheme 2 . Proposed Mechanism for the Formation of
Deoxyribosylurea from the Spiroaminal Derived from the
DNA—Spermine Adduct?
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aM = mass of parent oligomet.

To our knowledge, this is the first characterization of deoxyri-
bosylurea from the oxidation of a guanosine derivative. Deoxyri-
bosylurea is a known degradation species of thymine oxidation via
hydrolysis of thymine glycol& In general, a urea lesion possesses
mutagenicity and toxicity similar to an abasic siteUltimately,
the appearance of an unlikely DNA damage product in our
assessment of spermine’s role in DNA oxidation is both unexpected
and unprecedented. Spermine, widely held as radioprotective, has
been shown in this system to facilitate injurious DNA damage by
global disintegration of an 8-oxoguanosine nucleobase to an
information-deficient urea lesion.
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